mhrd logo inflibnet logo ugc logo

Module Details

Course : Graph Theory

Subject : Computer science

No. of Modules : 100

Level : FACULTY,OTHER,STUDENTS,UG

Source : SwayamPrabha;Channel-13

Back

Sr. No. Title Creator/Author E-Text Video URL Metadata
1 5-coloring planer graphs, kuratowsky's theorem Prof. L . Sunil Chandran - - Click Here
2 Proof of vizing's theorem, introduction to planarity Prof. L . Sunil Chandran - - Click Here
3 Edge coloring : vizing's theorem Prof. L . Sunil Chandran - - Click Here
4 More on vertex coloring Prof. L . Sunil Chandran - - Click Here
5 Vertex coloring : brooks theorem Prof. L . Sunil Chandran - - Click Here
6 Minors, topological minors and more on k - linkedness Prof. L . Sunil Chandran - - Click Here
7 More on connectivity : k-linkedness Prof. L . Sunil Chandran - - Click Here
8 Menger's theorem Prof. L . Sunil Chandran - - Click Here
9 Connectivity : 2-connected and 3-connected graphs Prof. L . Sunil Chandran - - Click Here
10 Gallai - millgram theorem , dilworth's theorem Prof. L . Sunil Chandran - - Click Here
11 Dominating set, path cover Prof. L . Sunil Chandran - - Click Here
12 More on matchings Prof. L . Sunil Chandran - - Click Here
13 More on tutte's theorem Prof. L . Sunil Chandran - - Click Here
14 More on hall's theorem and some applications Prof. L . Sunil Chandran - - Click Here
15 Probabilistic method: graphs of high girth and high chromatic number Prof. L . Sunil Chandran - - Click Here
16 Probabilistic method: second moment method, lovasz local lemma Prof. L . Sunil Chandran - - Click Here
17 More on graph minors, tree decompositions Prof. L . Sunil Chandran - - Click Here
18 Graph minors and hadwiger's conjecture Prof. L . Sunil Chandran - - Click Here
19 Second proof of wpgt, some non-perfect graph classes Prof. L . Sunil Chandran - - Click Here
20 More special classes of graphs Prof. L . Sunil Chandran - - Click Here
21 Proof of weak perfect graph theorem (wpgt) Prof. L . Sunil Chandran - - Click Here
22 Tuttes theorem on existence of a perfect matching Dr. L. Sunil Chandran - - Click Here
23 Introduction: vertex cover and independent set Dr. L. Sunil Chandran - - Click Here
24 More on halls theorem and some applications Dr. L. Sunil Chandran - - Click Here
25 Gallai : millgram theorem, dilworths theorem Dr. L. Sunil Chandran - - Click Here
26 Matchings: konigs theorem and halls theorem Dr. L. Sunil Chandran - - Click Here
27 Dominating set, path cover Dr. L. Sunil Chandran - - Click Here
28 More on tuttes theorem Dr. L. Sunil Chandran - - Click Here
29 More on matchings Dr. L. Sunil Chandran - - Click Here
30 Adjacency polynomial of a graph and combinatorial nullstellensatz Dr. L. Sunil Chandran - - Click Here
31 Gallai-roy theorem, acyclic coloring, hadwigers conjecture Dr. L. Sunil Chandran - - Click Here
32 Second proof of wpgt, some non-perfect graph classes Dr. L. Sunil Chandran - - Click Here
33 Proof of kuratowskys theorem, list coloring Dr. L. Sunil Chandran - - Click Here
34 Proof of weak perfect graph theorem (wpgt) Dr. L. Sunil Chandran - - Click Here
35 Chromatic polynomial, k - critical graphs Dr. L. Sunil Chandran - - Click Here
36 Interval graphs, chordal graphs Dr. L. Sunil Chandran - - Click Here
37 Perfect graphs: examples Dr. L. Sunil Chandran - - Click Here
38 List chromatic index Dr. L. Sunil Chandran - - Click Here
39 More on circulations and tensions, flow number and tuttes flow conjectures Dr. L. Sunil Chandran - - Click Here
40 Chvatals theorem, toughness, hamiltonicity and 4-color conjecture Dr. L. Sunil Chandran - - Click Here
41 Random graphs and probabilistic method: preliminaries Dr. L. Sunil Chandran - - Click Here
42 Boxicity,sphericity, hamiltonian circuits Dr. L. Sunil Chandran - - Click Here
43 More on hamiltonicity: chvatals theorem Dr. L. Sunil Chandran - - Click Here
44 Network flows: max flow mincut theorem Dr. L. Sunil Chandran - - Click Here
45 More on network flows: circulations Dr. L. Sunil Chandran - - Click Here
46 More special classes of graphs Dr. L. Sunil Chandran - - Click Here
47 Circulations and tensions Dr. L. Sunil Chandran - - Click Here
48 Proof of vizings theorem, introduction to planarity Dr. L. Sunil Chandran - - Click Here
49 Minors, topological minors and more on k- linkedness Dr. L. Sunil Chandran - - Click Here
50 5- coloring planar graphs, kuratowskys theorem Dr. L. Sunil Chandran - - Click Here
51 Connectivity: 2-connected and 3- connected graphs Dr. L. Sunil Chandran - - Click Here
52 More on connectivity: k- linkedness Dr. L. Sunil Chandran - - Click Here
53 Vertex coloring: brooks theorem Dr. L. Sunil Chandran - - Click Here
54 Edge coloring: vizings theorem Dr. L. Sunil Chandran - - Click Here
55 More on vertex coloring Dr. L. Sunil Chandran - - Click Here
56 Mengers theorem Dr. L. Sunil Chandran - - Click Here
57 Probabilistic method: graphs of high girth and high chromatic number Dr. L. Sunil Chandran - - Click Here
58 Probabilistic method: second moment method, lovasz local lemma Dr. L. Sunil Chandran - - Click Here
59 Probabilistic method: markovs inequality, ramsey number Dr. L. Sunil Chandran - - Click Here
60 More on graph minors, tree decompositions Dr. L. Sunil Chandran - - Click Here
61 Graph minors and hadwigers conjecture Dr. L. Sunil Chandran - - Click Here
62 - - Click Here
63 Digraph & tree Prof. Kajal De - - Click Here
64 Planar graph Mr. Mrinal Nath - - Click Here
65 Planar graph Mr. Mrinal Nath - - Click Here
66 Planar graph Mr. Mrinal Nath - - Click Here
67 Digraph & tree Prof. Kajal De - - Click Here
68 Chordal graphs - Click Here
69 Weighted graph - Click Here
70 Travelling salesman problem and chinese postman problem - Click Here
71 Hall's marriage theorem and its application - Click Here
72 Shortest path and dijkstra's algorithm - Click Here
73 Floyd - warshall algorithm - Click Here
74 Spanning trees in graphs - Click Here
75 Bellman - ford algorithm - Click Here
76 Matchings in graphs - Click Here
77 Distances in graph - Click Here
78 Trees - Click Here
79 Independence sets and coverings in graphs - Click Here
80 Minimum spanning tree algorithm - Click Here
81 Edge connectivity of graphs - Click Here
82 Vertex colouring of graphs - Click Here
83 Cut vertices and cut edges - Click Here
84 Edge colouring of graphs - Click Here
85 Kruskal's algorithm - Click Here
86 Euler's formula - Click Here
87 Planar graphs - Click Here
88 Applications of graphs in switching theory - Click Here
89 Four colour and five colour theorem - Click Here
90 Directed graphs (or digraphs) - Click Here
91 Complete and bipartite graph - Click Here
92 Basic properties of graphs - Click Here
93 Introduction to graphs - Click Here
94 Isomorphism of graphs - Click Here
95 Paths and circuits - Click Here
96 Perfect graphs - Click Here
97 Matrix representation of graphs - Click Here
98 Hamiltonian graphs - Click Here
99 Eulerian graphs - Click Here
100 Digraph & tree Prof. Kajal De - - Click Here