mhrd logo inflibnet logo ugc logo

Module Details

Course : P-02. Linear Algebra

Subject : Mathematics

No. of Modules : 70

Level : PG

Source : E-PG Pathshala

Back

Sr. No. Title E-Text Video URL Metadata
1 M-02. row reduction and the gaussian elimination - Click Here
2 M-03. introduction to vector spaces - Click Here
3 M-01. introduction to systems of linear equations - - Click Here
4 M-06. linear independence and dependence of vectors - Click Here
5 M-07. bases and dimension of a vector space - Click Here
6 M-05. linear combinations and spanning sets - Click Here
7 M-08. maximal linearly independent subsets - Click Here
8 M-12. invertibility of linear maps - Click Here
9 M-11. matrix representations - Click Here
10 M-10. linear transformations - Click Here
11 M-09. sum and quotient - Click Here
12 M-04. subspaces - Click Here
13 M-18. criterion for diagonalizability of a linear oerator - Click Here
14 M-16. eigenvalues and eigenvectors of a linear operator - Click Here
15 M-15. characterization of the determinant function - Click Here
16 M-21. orthogonalization and orthogonal complements - Click Here
17 M-19. minimal polynomial of a linear operator - Click Here
18 M-14. determinants of square matrices - Click Here
19 M-13. the rank of a matrix - Click Here
20 M-20. inner product spaces - Click Here
21 M-17. diagonalization - Click Here
22 M-23. operators on inner product spaces - Click Here
23 M-24. normal and self-adjoint operators - Click Here
24 M-26. unitary and orthogonal operators - Click Here
25 M-28. definition and basic properties - Click Here
26 M-29. symmetric bilinear forms - Click Here
27 M-25. spectral decomposition - Click Here
28 M-27. orthogonal operators - Click Here
29 M-22. projection operator - Click Here
30 M-30. quadratic forms - Click Here
31 M-34. definitions and basic properties - Click Here
32 M-33. jordan canonical forms iii - Click Here
33 M-32. jordan canonical forms ii - Click Here
34 M-31. jordan canonical forms - Click Here
35 M-35. free modules - Click Here
36 M-06. linear independence and dependence of vectors - Click Here
37 M-01. introduction to systems of linear equations - Click Here
38 M-02. row reduction and the gaussian elimination - Click Here
39 M-07. bases and dimension of a vector space - Click Here
40 M-05. linear combinations and spanning sets - Click Here
41 M-03. introduction to vector spaces - Click Here
42 M-04. subspaces - Click Here
43 M-16. eigenvalues and eigenvectors of a linear operator - Click Here
44 M-15. characterization of the determinant function - Click Here
45 M-08. maximal linearly independent subsets - Click Here
46 M-14. determinants of square matrices - Click Here
47 M-12. invertibility of linear maps - Click Here
48 M-11. matrix representations - Click Here
49 M-13. the rank of a matrix - Click Here
50 M-10. linear transformations - Click Here
51 M-09. sum and quotient - Click Here
52 M-18. criterion for diagonalizability of a linear oerator - Click Here
53 M-21. orthogonalization and orthogonal complements - Click Here
54 M-19. minimal polynomial of a linear operator - Click Here
55 M-23. operators on inner product spaces - Click Here
56 M-24. normal and self-adjoint operators - Click Here
57 M-25. spectral decomposition - Click Here
58 M-20. inner product spaces - Click Here
59 M-22. projection operator - Click Here
60 M-17. diagonalization - Click Here
61 M-26. unitary and orthogonal operators - Click Here
62 M-34. definitions and basic properties - Click Here
63 M-28. definition and basic properties - Click Here
64 M-33. jordan canonical forms iii - Click Here
65 M-32. jordan canonical forms ii - Click Here
66 M-29. symmetric bilinear forms - Click Here
67 M-31. jordan canonical forms - Click Here
68 M-27. orthogonal operators - Click Here
69 M-30. quadratic forms - Click Here
70 M-35. free modules - Click Here