mhrd logo inflibnet logo ugc logo

Module Details

Course : P-05.design And Analysis Of Algorithms

Subject : Computer Science

No. of Modules : 38

Level : PG

Source : E-PG Pathshala

Back

Sr. No. Title E-Text Video URL Metadata
1 M-01.design and analysis of algorithms : introduction - Click Here
2 M-02.fundamental stages of problem solving - Click Here
3 M-09.exhaustive searching and optimization problems - Click Here
4 M-04.analysis of iterative algorithms - Click Here
5 M-03.basics of algorithm writing - Click Here
6 M-08.closet pair and convex hull problems - - Click Here
7 M-06.analysis of recursive algorithms - - Click Here
8 M-07.brute force mathod - - Click Here
9 M-25.transitive closure and shortest path algorithms - Click Here
10 M-28.longest common subsequence and string edit - Click Here
11 M-23.optimal merge and shortest path algorithm - Click Here
12 M-24.introduction to dynamic programming - Click Here
13 M-27.multistage graphs and tsp problem - Click Here
14 M-26.multistage graphs and tsp problem - - Click Here
15 M-22. minimum spanning trees - - Click Here
16 M-21. more greedy algorithms - - Click Here
17 M-20. greedy algorithms - - Click Here
18 M-38.more randomized algorithms - Click Here
19 M-39.approximation algorithms - Click Here
20 M-40.more approximation algorithms - - Click Here
21 M-17. transform and conquer design paradigm - Click Here
22 M-14. decrease and conquer design paradigm - Click Here
23 M-18. more transform and conquer problems - Click Here
24 M-19. more transform and conquer problems - Click Here
25 M-10.divide and conquer technique - Click Here
26 M-12. closest pair and convex hull problems using divide and conquer - - Click Here
27 M-11. multiplication of long integers and strassen matrix multiplication - - Click Here
28 M-13. more applications of divide and conquer - - Click Here
29 M-16. more decrease and conquer algorithms - Click Here
30 M-34.reductions and np-complete proofs - Click Here
31 M-33.overview of np-complete problems - Click Here
32 M-29.optimal binary search tree - Click Here
33 M-31.computational complexity - Click Here
34 M-37.randomized algorithms - Click Here
35 M-35.np-complete proofs - Click Here
36 M-36.tackling more about np-hard problems - - Click Here
37 M-30.knapsack problem and flow scheduling - - Click Here
38 M-32.p and np problems - - Click Here